
Symposium Series NO. 154	 © 2008 Crown Copyright
Acceptance Criteria for Damaged and Repaired 
Passive Fire Protection

Diane Kerr1,*, Deborah Willoughby1, Simon Thurlbeck2 and Stephen Connolly3

1Health and Safety Laboratory, Process Safety Section, UK 
2MMI Engineering Ltd 
3Health and Safety Executive, Offshore Safety Division, UK 
*Contact details: Diane Kerr, Process Safety Section, Health and Safety Laboratory, 
BUXTON, SK17 9JN, United Kingdom; e-mail: diane.kerr@hsl.gov.uk 

© Crown Copyright 2008. This article is published with the permission of the Controller  
of HMSO and the Queen’s Printer for Scotland

Keywords: PFP, Damage, Repair, Cementitious, Intumescent, Acceptance 
Criteria.

Introduction
The performance of ageing, weathered, damaged or repaired passive fire protection (PFP) 
is a major concern, particularly offshore where it is often a safety-critical factor in protect-
ing structures and plant from the effects of severe fires. The two most commonly used types 
of PFP materials are cementitious and intumescent. Cementitious PFP works initially by 
holding the temperature of the substrate to around 100°C until all the bound water is vapor-
ised and then acts as a passive insulator. Intumescent PFP has an organic base which, when 
subjected to fire, expands producing a stable char with good thermal insulation properties.

Whilst the performance of these materials when in good condition is well under-
stood, little or no information is available which provides an understanding of their 
performance in a damaged or repaired state. In the absence of such information, verifying 
performance standards where PFP is employed as a risk-reduction measure cannot be 
undertaken reliably.

To address this shortfall, a two-phase Joint Industry Project was established to 
develop data on the performance of damaged PFP and to suggest an inspection methodol-
ogy with acceptance criteria. This paper will describe specially produced damaged and 
repaired PFP test pieces (both cementitious and intumescent) and will summarise their 
performance in jet fire resistance tests.

The paper will also discuss the acceptance criteria developed for damaged and 
repaired PFP. The project’s findings are providing important input into a new procedure 
for identifying when repair or replacement is necessary, and which forms of repair are 
most effective. The findings also highlight valuable lessons in quality assurance of the PFP 
application process.

The work reported here was undertaken in a collaborative project developed and 
managed by MMI Engineering Ltd. The work was sponsored by HSE, BP, Centrica 
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Energy, Canadian Natural Resources, Marathon, Total, and Shell. PFP materials were 
provided by International Coatings, Cafco International, and PPG Indistries, and specimen 
coating was undertaken by Salamis and RBG Ltd. Testing was undertaken on behalf of the 
Sponsors by the HSL.

Test Facility And Instrumentation
The tests were carried out using HSL’s jet fire resistance test facility. The facility is designed 
to give an indication of how well passive fire protection materials will perform in a jet fire.  
It involves impinging a propane vapour jet fire on a target covered with PFP material. The  
test facilities and details comply with OTI 95 634 and Draft ISO standard ISO/CD 22899-1.

The test specimen was bolted between an open-fronted steel box (lined with ceramic 
boarding) and a protective rear chamber. A wall of lightweight building blocks was erected 
around the target assembly to prevent flames impinging on the sides of the target. A photo-
graph showing the installed assembly is given in Figure 1.

The test specimen was instrumented with mineral insulated, stainless steel sheathed, 
1.5 mm, type K thermocouples supplied and fitted by HSL. Thermocouples were installed 
in the back surface of the panels by means of drilled, interference fit, holes and were held 
in position in the web by bulkhead fittings. Measurements were logged using DT3003 32 
channel Data Translation data acquisition boards fitted directly into a PC. A FLIR SC 2000 
thermal imaging camera was used to measure the temperature distribution over the back of 
the test specimen.

Substrate
The substrate for a normal structural steel test consists of an open-fronted steel box, nomi-
nal internal dimensions 1500 mm × 1500 mm × 500 mm, made from 10 mm thick steel.  

Figure 1.  Installed Assembly (test 10 specimen, before test)
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It has a 20 mm thick central web, 250 mm deep, to simulate corner or edge features such 
as stiffening webs or edges of “I” beams. The web is made up of two 10 mm thick steel 
plates, which are slotted before being welded together, to allow the insertion of thermo-
couples The box is flanged at the rear to allow attachment (by bolting or clamping) of a 
1500 mm × 1500 mm × 1000 mm protective chamber when required.

In order to be able to test as many types of damage as possible, whilst keeping the 
number of jet fire tests to a minimum, it was decided to replace the back of the box with a 
panel comprising two half panels and a web. In this way, three different features could be 
assessed in each test. A piece of L-section was welded along the back of one edge of each 
of the half panels and holes drilled through these and the back of the web to allow the two 
half panels and the web to be bolted together (see Figure 2).

Figure 2.  Half-Panel and Web Assembly
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For the repair trials, it was considered that the number of joints should be minimised 
by welding the half panels and the web together to give a single panel incorporating the 
web. A second type of substrate was also used. This consisted of a simple plate panel, 
without a web, fitted to form the back of the box.

Coating
Test specimens for the damage trials were coated with cementitious or intumescent PFP 
materials supplied by Cafco International (Mandolite 550), International Coatings 
(Chartek IV and VII) and PPG Industries (Pitt-Char XP).

Specimens were coated with the required thickness of each material (as specified by the 
manufacturer) to achieve the following protection criteria, when subjected to a jet fire test:

	P anels – at least 60 minutes for a temperature rise of 140°C.
	 Web – at least 60 minutes for a temperature rise of 400°C. 

(temperature rise above initial substrate temperature)

Chartek IV is a relatively hard epoxy intumescent PFP material and Pitt-Char XP is a 
softer, more flexible material. A thickness of 12 mm of the respective intumescent  
materials was applied to the panels and webs, with reinforcement located in the middle 
third of the coating.

The cementitious test specimens were all prepared with a nominal 38 mm deep coat-
ing of Mandolite 550. Reinforcement was with plastic coated hexagonal wire mesh retained 
by helical pins in the middle third of the coating.

The repair test specimens were coated with a combination of cementitious material 
(Mandolite 550) and intumescent material (Chartek VII or Pitt-Char XP). These particular 
intumescent materials were chosen as both can be used with reinforcement that does not 
require pinning. 

Coating of the majority of the substrates was witnessed and quality controlled  
by MMI Ltd. A photograph illustrating coating of a repair test specimen is provided in 
Figure 3.

Test Programme
The first test series involved carrying out jet fire resistance tests on PFP specimens with the 
following types of induced damage:

l	 Gouges and nicks;
l	 Cracks;
l	 Loss of bonding and retention; and
l	 Water saturation (cementitious specimen)

The second test series was designed to test several typical ‘in-situ’ repairs found offshore. In 
practice, where damage has occurred to a small area of cementitious material, it is typically 
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removed and replaced with new intumescent material. Problems can arise at the interface 
between the materials, as the two types of PFP work by completely different mechanisms.

Three types of repair joint were investigated:

l	 Simple butt joints between the cementitious and intumescent PFP;
l	 Two step cementitious/intumescent joints; and
l	 A smooth chamfer joint between the materials

The induced damage and repair joints are described in more detail in Tables 1, 2 and 3. 
The joints are also illustrated in Figure 4.

Results and Conclusions
The most significant results and overall conclusions from the damage and repair trials are 
detailed below. The results from this collaborative project will also be accessible, via the 
HSE website, in due course.

Damaged Intumescent Trials
Results
Figures 1 and 5 show the specimen for trial 10 before and after testing. The purpose of this 
test was to determine the effect of gouging, cracking and disbondment on Chartek IV.

Left Panel
The left panel was physically damaged (gouged), but was bonded to the steel substrate. 
After the test, slight enlargement of the gouges was observed. Thermocouple temperatures 
and thermal images confirm that the main hot spot was recorded behind the horizontal  

Figure 3.  Coating Application – Butt joint
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(25 mm × 200 mm) gouge above the centre line. The time until a 140°C temperature rise 
was seen behind this gouge was 4 minutes. The highest temperature rise after 60 minutes  
was 325°C.

Right Panel
Prior to the test, the right panel was cracked and the coating was deliberately disbonded 
from the steel substrate. After the test this panel was much more damaged than the left 

Table 1.  Intumescent PFP tests

Test 
number Purpose Anomalies

01 Chartek IV control 
specimen

None. Panels and web all with same thickness (12 mm)  
of sound material and reinforcement

02 Effect of loss of 
material, to depth 
of reinforcement 
layer, and beyond 
on Chartek IV

Left panel – Sound material with 350 mm × 40 mm 
vertical gouge to depth of reinforcement.

Right panel – Sound material with 350 mm × 40 mm 
vertical gouge beyond depth of reinforcement.

Web – 350 mm long vertical 45o nick from edge of web 
beyond depth of reinforcement.

04 Chartek IV 
disbonding

Left panel – Disbonded with partially retained mesh.
Right panel – Bonded with no mesh
Web – Disbonded with partially retained mesh

10 Effect of gouging, 
cracking and 
disbondment on 
Chartek IV

Left panel – Sound material with 200 mm × 25 mm 
horizontal gouge in top half, 200 mm × 12 mm 
horizontal gouge in bottom half and 350 mm × 12 mm 
vertical gouge running downwards from centre.  
All gouges through mesh.

Right panel – Disbonded material with 2, 3 and 5 mm 
cracks to substrate running full length.

Web – Disbonded material with 5 mm crack to substrate 
running full length.

13 Effect of gouging, 
cracking and 
disbondment on 
Pitt-Char XP

Left panel – Sound material with 200 mm × 25 mm 
horizontal gouge in top half, 200 mm × 12 mm 
horizontal gouge in bottom half and 350 mm × 12 mm 
vertical gouge running downwards from centre.  
All gouges through mesh.

Right panel – Disbonded material with 2, 3 and 5 mm 
cracks to substrate running full length.

Web – Disbonded material with 5 mm crack to substrate 
running full length.
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panel (above), the material was bowed out from the substrate and cracked. There was 
considerable enlargement of the induced cracks, particularly the 2 mm crack. The highest 
temperatures were recorded at the lower ends of the cracks, in the high erosion zone. 
Thermal images confirm that there is a hot area around all three cracks in the high erosion 
zone. The time until a 140°C temperature rise was seen behind the cracks was 9 minutes. 
The highest temperature rise after 60 minutes was 262°C.

Web
The web was physically damaged (cracked) and the coating was deliberately disbonded 
from the steel substrate. Temperatures rose very rapidly behind the (5 mm) crack on the 
web. Major damage was caused, with bare steel being exposed for the bottom two thirds 
of the web. A 400°C temperature rise was achieved after 5 minutes. The maximum temper-
ature rise of 705°C was achieved after 25 minutes, with the temperature rise at 60 minutes 
being 656°C. These temperatures are consistent with the Chartek IV being stripped off 
leaving bare steel exposed to the jet fire.

Table 2.  Cementitious PFP tests

Test 
number Purpose Anomalies

05 Control 
specimen

None. Panels and web all with same thickness (38 mm)  
of sound material, and reinforcement

06 Effect of loss of 
material, to 
depth of 
reinforcement 
layer, and 
beyond

Left panel – Sound material with 350 mm × 40 mm vertical 
gouge to depth of reinforcement.

Right panel – Sound material with 350 mm × 40 mm vertical 
gouge beyond depth of reinforcement.

Web – 350 mm vertical nick from edge of web beyond depth  
of reinforcement.

07 Effect of 
cracking

Left panel – Sound material with 1, 3 and 5 mm cracks 
running full length.

Right panel – Disbonded material with 1, 3 and 5 mm cracks 
running full length.

Web – Disbonded material with 5 mm crack running full length.
08 Effect of 

moisture 
content

Left panel – Sound material with panel fully saturated.
Right panel – Sound material with panel 50% saturated.
Web – Sound material with web fully saturated.

09 Effect of loss of 
bonding and 
loss of 
retention 

Left panel – Disbonded material & steel reinforcement fixed 
around edges of panel.

Right panel – Bonded material with no steel reinforcement. 
Web – Disbonded material and steel reinforcement partially 

retained.
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Table 3.  Repair tests

Test 
number PFP Repair

03 Mandolite 550 with 
hexagonal wire mesh 
reinforcement repaired 
with Chartek VII with  
HK-1 glass/carbon fibre 
reinforcing scrim

Simple butt joint vertically and horizontally  
in a panel without a web

11 Mandolite 550 with 
hexagonal wire mesh 
reinforcement repaired 
with Chartek VII with  
HK-1 glass/carbon fibre 
reinforcing scrim

Left panel – Stepped cementitious joint  
across centre line.

Right panel – Chamfered intumescent joint  
across centre line.

Web – Stepped cementitious joint on left side  
and chamfered intumescent joint on front  
and right side of centreline.

12 Mandolite 550 with 
hexagonal wire mesh 
reinforcement repaired 
with Pitt-Char XP with  
FM glass fibre reinforcing 
scrim

Left panel – Stepped cementitious joint across 
centre line.

Right panel – Chamfered intumescent joint  
across centre line.

Web – Stepped cementitious joint on left side  
and chamfered intumescent joint on front  
and right side of centreline.

Figure 4.  Repair joints
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Conclusions
The main conclusions from the damaged intumescent trials were as follows:

(a)	I f there is a gouge in PFP on a panel, a hot spot is formed behind it in a jet fire. If the 
gouge is down to the substrate, 12 mm and 25 mm wide gouges give a 140°C tempera-
ture rise within 3 minutes and a 75 mm wide gouge gives a 400°C temperature rise 
within the same time. The temperature rise is slower if the gouge leaves PFP attached 
to the substrate (22 minutes until 140°C temperature rise on 75 mm gouge with 
material remaining.

(b)	 45o nicks in PFP on webs lead to bare metal being exposed in a jet fire. Where the nick 
just exposed the substrate, a 400°C temperature rise was reached in 30 to 36 minutes 
and where the nick just exposed the mesh, in 46 minutes. The evidence suggests that 
the erosive forces shear off the char if it expands at right angles to them.

(c)	 A 5 mm crack in disbonded material has a much more severe effect on material on an 
edge feature (web) than on a flat surface (panel). A crack in the PFP on an edge leads to 
rapid failure of the PFP with the PFP being stripped off leaving bare metal and giving a 
temperature rise of 400°C within 4 minutes. This occurs with both Chartek IV (a rela-
tively hard material) and Pitt-Char XP (a relatively soft material) and hence it is likely 
to occur with any epoxy intumescent material. Cracks in disbonded material on flat 
surfaces still lead to considerable damage with a temperature rise of 140°C occurring 
within 10 minutes, with the Pitt-Char XP being more effected than the Chartek IV.

(d)	 For the material on the panels, disbondment (with partially retained reinforcement 
mesh) and a complete lack of reinforcement appear to have only a minor effect on fire 
resistance, with lack of reinforcement having a marginally greater effect (58 minutes 
for a temperature rise of 140°C compared to greater than 60 minutes). However, as 

Figure 5.  Specimen for test 10 (after test)
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indicated above, if there are flaws in the surface of the material, this can lead to rapid 
failure. There appeared to be a slightly greater effect on the disbonded material with 
partially retained reinforcement on the web with a temperature rise of 400°C in  
55 minutes rather than the required 60 minutes.

(e)	P recise specification and quality control of intumescent PFP application (material 
thickness, uniformity, reinforcement position) is required in order to achieve the desired 
level of fire protection from the PFP.

Summary
The overall conclusions are that the most severe effects are from damage to PFP on edges. 
Cracks in disbonded material lead very rapidly to the PFP being stripped off and nicks can 
give the same effect although it takes longer. For material on flat surfaces, gouges or 
cracks down to the substrate lead to a significance loss in fire resistance, particularly if the 
material is also disbonded. Disbondment or loss of reinforcement alone, (no surface 
damage) has only a minor effect on performance provided that the material is at least 
partially attached to the surface (by the reinforcement system if disbonded or by the bond-
ing if the reinforcement system is corroded).

Damaged Cementitious Trials
Results
Figures 6 and 7 show the specimen for trial 07 before and after testing. The purpose of this 
test was to determine the effect of cracking and disbondment on Mandolite 550.

Figure 6.  Specimen for test 07 (before test)
10



Symposium Series NO. 154	 © 2008 Crown Copyright
Left Panel
The left panel was physically damaged (5, 3 and 1 mm induced cracks), but was bonded to 
the steel substrate. On completion of the test, the dimensions of the cracks remained 
unchanged. The highest temperature rise of 166°C after 60 minutes was recorded at the top 
of the 5 mm crack.

Right Panel
The right panel was also physically damaged (5, 3 and 1 mm induced cracks). In addition, 
the coating was deliberately disbonded from the steel substrate. On completion of the test, 
the dimensions of the cracks remained unchanged but, in this case, the coating bowed out 
from the substrate in the bottom two-thirds of the panel. The highest temperature rise of 
222°C after 60 minutes was recorded at the bottom of the 5 mm crack.

The thermal image at 60 minutes suggested that the whole of the right hand panel 
(with cracked, disbonded material) was hotter than the left panel (with cracked, bonded 
material). This may account for the coating bowing out from the substrate.

Web
The web was physically damaged (cracked) and the coating was deliberately disbonded 
from the steel substrate. Initially the web temperatures around the high erosion posi-
tions were higher than the temperatures in the high heat flux positions. Towards the 
end of the test the temperature at the centre of the web in the high heat flux zone 
exceeded the others. Bare metal was visible behind mesh on 95% of front face of the 

Figure 7.  Specimen for test 07 (after test)
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web and on the sides of the web; the PFP material was (mainly) intact but coming 
away from the substrate, due to the erosion forces from the jet. If the reinforcement 
had not been intact, it is likely that the PFP would have fallen off. A full-depth  
crack was observed along the width of the web at the bottom right hand side. The 
highest temperature rise after 60 minutes was 473°C behind the middle of the 5 mm 
crack on the web.

Conclusions
The main conclusions from the damaged cementitious trials were as follows:

(a)	 350 mm × 40 mm gouges on flat surfaces resulted in slightly higher temperatures if the 
gouge was through the retention mesh rather than down to the mesh although the 
damaged panels still both easily met the 140°C temperature rise in greater than  
60 minute fire resistance requirement. The 350 mm long 45° nick in the web gave 
much higher temperatures than an undamaged specimen but still met the 400°C fire 
resistance criterion. Gouges and nicks of the size used would not result in failure, 
although the safety margin is lower for a nick on an edge feature. 

(b)	 For the specimens with 1, 3 and 5 mm cracks, cracks in sound material were less seri-
ous than those in disbonded material. None of the cracks increased in size, probably 
because the retention mesh was intact. It is likely that the PFP on the web would have 
fallen off if the retention mesh had been corroded by water ingress. Cracks in sound 
material reduced the fire resistance time by 5 minutes whereas cracks in disbonded 
material reduced the time by 15 to 17 minutes.

(c)	1 00% saturation and 50% saturation of sound material made no significant difference 
to the fire resistance. There were no signs of water saturation causing spalling.

(d)	 Disbondment with full or partial retention appeared to have little effect on the PFP 
performance if there were no openings to allow jet the jet fire to get between the mate-
rial and the substrate. Disbondment with cracking, especially on an edge feature, leads 
to significant loss of fire resistance. 

(e)	I f the material is fully bonded to a flat surface and there are no jet fire ingress points, 
lack of retention appears to have no effect. However, loss of retention from the bottom 
of a gouge has a slight effect and from a nick in an edge feature has a significant 
effect.

Summary
The largest temperature differences and consequent earliest times for water to be driven 
off all occur on a damaged web suggesting that damage to edge features is again most 
critical. The maximum substrate-heating rate after the water was driven off was 
5.7°C min-1. Although the test with water-saturated specimens had to be prematurely 
terminated, there was no evidence to suggest that these specimens would not have met 
their ratings. The only specimens not to meet their fire resistance specification were 
those with cracks.
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Repair Trials
Results
Figures 8, 9 and 10 show the specimen for trial 11 before and after testing. The purpose of 
this test was to determine the effect of chamferred and stepped repair joints. 

Left Panel
The left panel incorporated a stepped repair joint. On this joint, fully expanded firm char was 
formed that was intact except for a crack near the edge of the panel on the left hand side where 
a small gap was visible where the Chartek had come away from Mandolite (see Figure 9).

Right Panel
The right panel incorporated a chamfered repair joint. At the interface between the 
Mandolite 550 and chamfered Chartek VII (see Figure 10), the Chartek had not come away 
from the Mandolite. However, there was a slight crack along the base of the Mandolite and 
along the Chartek. On the right side of the joint the char was more eroded and the mesh 
was exposed over a small area.

Web
The left hand side of the web incorporated a stepped repair joint. On the front of the left 
(stepped) side of the web, there was some damage to the Mandolite 550 and char had been 
eroded away near this zone.

Figure 8.  Specimen for test 11 (before test)
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Figure 9.  Left panel after test (11)

Figure 10.  Right panel after test (11)
14
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The right hand side of the web had a chamfered (Chartek VII) repair joint. After the 
test, the char on this side of the web was not firm and the mesh was exposed in the jet 
impact zone.

Overall, the temperature plots and thermal images indicated that, although both 
types of joint appeared acceptable, the chamfered joint performed better than the stepped 
joint. Thermal images comparing all three repairs are illustrated in Figure 11. 

Conclusions
The following conclusions were made in regard to the three types of repair assessed:

(a)	 Butt joints between sound cementitious material (34 mm thick) and new intumescent 
material (12 mm thick) are the weakest of the three types of joint assessed. When the jet 
impacts on the thinner coating of intumescent material, it is directed across the surface 
until it hits the edge formed by the thicker coating of cementitious material, where it is 
then directed away from the surface. The combination of high erosive forces and high 
heat flux appears to result in the char eroding away faster in this configuration.

(b)	 Stepping the sound cementitious material and overcoating this with new intumescent 
material gives an adequate join but there are still erosive effects and, because the 
thickness of intumescent material is not much greater than normal, the repair is not as 
good as chamfering the intumescent material.

(c)	 Chamfering the intumescent material with an extra loop of reinforcement appeared to be 
the best form of repair. It worked well with both a relatively hard intumescent material 
and with a relatively soft one. In addition, it worked as a repair on an edge feature.

Acceptance Criteria for Damaged PFP
As reported by Thurlbeck (2006), current Offshore Safety Case submissions assume that 
PFP material is fit-for-purpose, performs as specified, and therefore performance standards 

Figure 11.  Thermal images (at 60 minutes) of repair joints
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Table 4.  Acceptance criteria for anomalies in epoxy intumescent PFP

Anomaly Criteria Suggested action

Loss of  
topcoat

Loss of topcoat is 
ACCEPTABLE.

Action should comprise removal of  
loose topcoat material to a clean and 
sound material, a check that adequate 
thickness remains, and then re-
topcoating with a recommended 
topcoat. A check should also be made 
to identify the presence of corrosion  
at the substrate surface.

Cracking Fully bonded, fully or partially 
reinforced, material which 
contains cracks of less than 
2 mm width is 
ACCEPTABLE.

The crack should be sealed and made 
watertight to prevent water ingress into 
the material which may leach out active 
agents associated with the intumescent 
process.

Material which is disbonded or 
has damaged reinforcement, 
and has cracks of any width or 
depth is UNACCEPTABLE.

Action should comprise removal of the 
material down to the substrate, and 
back to soundly bonded material,  
and the implementation of the 
Manufacturers recommended repair.

Disbonded Disbonded material of an area  
of less than 1 square metre, 
and which shows no signs of 
cracking or surface anomalies, 
is ACCEPTABLE.

No repair is necessary but the anomaly 
should be monitored.

Disbonded material of an area of 
greater than 1 square metre, or 
a disbonded area of less than  
1 square metre which has 
surface anomalies, is 
UNACCEPTABLE.

Repair should comprise removal of the 
material down to the substrate, and 
back to soundly bonded material, and 
the implementation of the 
Manufacturers recommended repair.

Loss/removal 
of material 
on structural 
steelwork

Loss of bonded, reinforced 
material over an area  
which is less than the 
acceptable area, and to  
any depth of remaining 
material which may include 
damage to the reinforcement,  
is ACCEPTABLE.

Action should comprise removal of any 
loose material and the application of an 
appropriate topcoat system.
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are met. Whilst this may be true, little or no information is available which provides an 
understanding of PFP performance in a damaged or repaired state. Verification of the 
performance standards could not, therefore, be reliably undertaken.

Required fire performance is generally specified in terms of time and temperature. 
In simple terms, the fire performance criteria specify survival times and are generally 
associated with ensuring an appropriate level of integrity is maintained to prevent an event 
from escalating, or for ensuring that personnel can be evacuated safely. 

The fire performance requirements for a critical item should be detailed in the 
performance standards, along with the availability and reliability of the element, and the 
verification tasks to ensure that the performance is ensured.

The criteria are described by defining:

l	 Whether the protected item is a barrier or a loadbearing element;
l	 The type of fire/heat flux loading to which it is subjected;
l	 The critical temperature which should not be exceeded to ensure integrity and/or 

insulation requirements are met; and
l	 The time over which the temperature should remain below this critical temperature.

The data from the damage and repair trials described above, along with practical 
considerations, have been reviewed and a set of acceptance criteria produced, including a 
decision flowchart. This can be used by asset integrity personnel to assess the acceptabil-
ity, or otherwise, of observed anomalies in PFP coatings and to determine whether the 
performance standard of a particular Safety Critical Element is maintained. Examples of 
the type of anomalies that (without corrective action) could be expected to lead to a 
failure (or reduced performance) include:

l	 Disbonded material of an area of greater than 1 m2.
l	 Material which is disbonded or has damaged reinforcement, and has cracks of any 

width or depth.
l	 Loss of material, regardless of area, which is down to the substrate or has insufficient 

thickness to provide the required fire resistance performance.

Acceptance criteria for cementitious PFP and epoxy intumescent PFP material containing 
anomalies will be accessible, via the HSE website, in due course. An extract from the 
criteria, including suggested action where anomalies are observed, is shown in Table 4.
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