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The main aim of this paper is to establish a reliable model of a process under its 
normal operating conditions. The use of this model should reflect the true behaviour of 
the process and allow distinguishing a normal mode from an abnormal one. In order to 
obtain this reliable model for the process dynamics, the black-box identification by 
means of an ARX (Auto-Regressive with eXogenous input) model based on the least 
squares criterion has been chosen. This study shows the choice and the performance of 
this modelling approach. An analysis of the inputs number, time delay and their 
influence on the behaviour of the prediction is carried out. A reactor-exchanger is used 
to illustrate the proposed ideas concerning the dynamics modelling. Satisfactory 
agreement between identified and experimental data is found and results show that  
the identified model successfully predicts the evolution of the outlet temperature of  
the process.
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1. I ntroduction
Process development and continuous request for productivity led to an increasing 
complexity of industrial units. In chemical industries, it is absolutely necessary to control 
the process and any drift or anomaly must be detected as soon as possible in order to 
prevent risks and accidents. Moreover, detecting a fault appearance on-line is justified by 
the need to solve effectively the problems within a short time (Chetouani, 2006).

We are interested in the anomaly detection module intended to supervise the 
functioning state of the system (Chetouani, 2007). The former has to generate on-line 
information concerning the state of the automated system. This state is characterized not 
only by control and measurement variables (temperature, reaction rate, etc.), but also by 
the general behaviour of the process and its history, showing in time whether the behaviour 
of the system is normal or presents drifts. In the context of numerical control, fault detec-
tion and isolation (FDI) proves a vital complement to the adaptive means of dealing with 
instabilities in nonlinear highly unsteady systems. Under normal conditions, the fault 
detection module allows all information to be processed and managed in direct liaison with 
its general behaviour. In other case, it detects any anomaly and alerts the operator by 
setting on the appropriate alarms.

The intrinsic highly nonlinear behaviour in the industrial process, especially when a 
chemical reaction is used, poses a major problem for the formulation of good predictions 
and the design of reliable control systems (Cammarata et al., 2002). Due to the relevant 
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number of degrees of freedom, to the nonlinear coupling of different phenomena and to the 
processes complexity, the mathematical modelling of the process is computationally heavy 
and may produce an unsatisfactory correspondence between experimental and simulated 
data. Similar problems arise also from the uncertainty for the parameters of the process, 
such as the reaction rate, activation energy, reaction enthalpy, heat transfer coefficient, and 
their unpredictable variations. In fact, most of the chemical and thermo-physical variables 
both strongly depend and influence instantaneously the temperature of the reaction mass 
(Chetouani, 2007). One way of addressing this problem is the use of a reliable model for 
the on-line prediction of the system dynamic evolution (Leontaritis et al., 1985).

The main aim of this study is to obtain a powerful model of reference allowing to 
reproducing the process dynamics in normal mode. The present study focuses on the 
development, and implementation of an ARX model for the one-step ahead forecasting  
of the reactor-exchanger dynamics. The performance of this stochastic model was then 
evaluated using the performance criteria. Results show that the ARX model is representa-
tive for the dynamic behaviour of the nonlinear process. Experiments were performed in a 
reactor-exchanger and experimental data were used both to define and to validate the 
model. The identification procedure, the experimental set-up and prediction results are 
described in the following sections.

2. I nput-output modelling approach: ARX Identification
Modelling is an essential precursor in the parameter estimation process. Identification 
strategies of various kinds by means of input–output measurements are commonly used in 
many situations in which it is not necessary to achieve a deep mathematical knowledge of 
the system under study, but it is sufficient to predict the system evolution (Fung et al., 
2003; Mu et al., 2005). This is often the case in control applications, where satisfactory 
predictions of the system that are to be controlled and sufficient robustness to parameter 
uncertainty are the only requirements. In chemical systems, parameter variations and 
uncertainty play a fundamental role on the system dynamics and are very difficult to be 
accurately modelled (Cammarata et al., 2002). Therefore, the identification approach based 
on input-output measurements can be applied.

In this study, the chosen method adopted for process modelling is based on a para-
metric identification of an ARX model. The choice of this strategy is justified by the fact 
that it is simple to implement it. The evolution of the estimated output allows to follow the 
dynamics evolution of the process and to reflect the fault presence by the variation of the 
estimated parameters of the identified model (Iserman, 1993).

ARX modelling was the subject of studies in several fields such as chemical engi-
neering (Rivera et al., 1995; Rohani et al., 1999), agriculture and biological science 
(Fravolini et al., 2003; Frausto et al., 2003), medicine (Liu et al., 2003), energy and the 
power (Yoshida et al., 2001), Energy economics (Ringwood et al., 1993).

In this paper, we propose the ARX identification for modelling the dynamic behav-
iour of a reactor-exchanger. The aim is to analyze the model orders, the time delay and the 
validation of the identified model.
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The ARX structure describes the input effects u(t) on the process output y(t). The 
ARX model is represented by the following expression:
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where e(t) refers to the noise supposed to be Gaussian. ana
 and bnb

 are the model parame-
ters. na and nb indicate respectively, the order of the polynomials of the output A(q) and the 
input B(q). The parameter nk is the time delay between y(t) and u(t).

The polynomial representation of the equation (1) is given as follows:

	 A(q)y(t) = B(q)u(t - nk) + e(t)	 (2)

where A(q) and B(q) are given by:
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q-1 is the delay operator such as:

	 u(t = 1) = q-1 u(t)	 (5)

A(q) and B(q) are estimated by the least squares identification (Ljung, 1987, Ljung, 2000).

3. Ex perimental results
3.1. Ex perimental device
The reactor-exchanger is a glass-jacketed reactor with a tangential input for heat transfer 
fluid. It is equipped with an electrical calibration heating and an input system. It is equipped 
with Pt100 temperature probes. The heating-cooling system, which uses a single heat 
transfer fluid, works within the temperature range between −15 and +200 C. Supervision 
software allows the fitting of the parameters and their instruction value. It displays and stores 
data during the experiment as well as for its further exploitation. The input of the reactor-
exchanger u(t) represents the heat transfer fluid temperature allowing the heating-cooling of 
the water. y(t) represents the outlet temperature of the reactor-exchanger. The process is 
excited by an input signal which is very rich in frequencies and amplitudes in order to have 
a data set suitable for the estimation procedure. The sampling time is fixed at 2 seconds. 
Before starting the estimation of parameters, the database is divided into two separated sets. 
The first set is used for the estimation of parameters and the second one for the model valida-
tion. The first set is sufficiently informative and covering the whole spectrum. The second set 
contains sufficient elements to make the validation as credible as possible.

3.2. Establ ishment of ARX models
A set of models is built by fixing na = [1, . . . , 5], nb = [1, . . . , 5] and nk = [1, . . . , 10].  
The models having na lower than nb are rejected in order to respect the physical aspect of 
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the process. Consequently, a set of 150 models is worked out and estimated while examin-
ing the stability of each model by the Lyapunov criterion (Ljung, 1987).

3.2.1. E stimation of the time delay
There are several methods for estimating the time delay (Ljung, 1987; Chen et al., 1989; 
Ljung, 2000). In this paper, the adopted approach is based on the evaluation of the quadratic 
criterion (Ljung, 2000). This criterion is as follows:
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� 	
(6)

e(t,q) = y(t) - ŷ(t) and ŷ(t) represent respectively the prediction error and the associated 
predictor. The quadratic criterion value is calculated in function of the time delay value  
nk = [1, . . ., 10]. This method is applied to two simple ARX models (na = nb = 1) and (na = 
nb = 2). The choice of these simple models allows observing the criterion evolution accord-
ing to the time delay but without compensating it (time delay) by a high complexity model. 
The criterion evolution according to the time delay for those simple models is shown in 
figs. 2 and 3.

By examining fig. 3, it is easy to observe the presence of the minimal value of the 
criterion for nk = [5,6,7,8]. But, in fig. 2, this presence is supported clearly for nk = [6,7]. 

Figure 1.  Experimental device: A reactor-exchanger
�
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Therefore, it is better to consider, first, that the time delay values are both nk = 6 and nk = 7. 
Then, each model having a different time delay (nk = [6,7]) will be rejected.

3.2.2.  Quality of fit
The quality of fit criterion allows a judicious selection of models. This criterion proposed 
by Hagenblad et al. (1998) is based on the analysis of the prediction error and of the output 
variance. It is given by the following expression:
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Fig. 4 shows the criterion evolution according to the different models Mna . nb
. The models 

M3.2, M4.2 and M5.5 have a good quality of adjustment compared to the other models 

Figure 2.  Criterion evolution according to the time delay nk for na = nb = 1
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Figure 3.  Criterion evolution according to the time delay nk for na = nb = 2
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(important peaks). The model M5.5 is not being chosen because it is too large. The peak of 
the model M4.2 is more important than that of the model M3.2. Consequently, the model 
M4.2 is more representative for the dynamic behaviour than the model M3.2 and thus  
for the two time delay values (nk = 6 and nk = 7). In conclusion, the model (M4.2.7) having 
nk = 7 is the most suitable one for reproducing the process dynamics.

3.3. R esidual analysis
Once the training and the test of the ARX model has been completed, it should be ready to 
simulate the system dynamics. Model validation tests should be performed to validate the 
identified model. Billings et al. (1986) proposed some correlations based model validity 
tests. In order to validate the identified model, it is necessary to evaluate the properties of 
the errors that affect the prediction of the outputs of the model, which can be defined as the 
differences between experimental and simulated time series. In general, the characteristics 
of the error are considered satisfactory when the error behaves as white noise, i.e. it has a 
zero mean and is not correlated (Cammarata et al., 2002; Billings et al., 1986). In fact, if 
both these conditions are satisfied, it means that the identified model has captured the 
deterministic part of the system dynamics, which is therefore accurately modelled. To this 
aim, it is necessary to verify that the auto-correlation function of the normalized error e(t), 
namely φ e e (t), assumes the values 1 for t = 0 and 0 elsewhere; in other words, it is 
required that the function behaves as an impulse. This auto-correlation is defined as follows 
(Zhang et al., 1996; Billings et al., 1986):

	 φ e e (t) = E(e(t - t)e(t)] = d (t)    ∀t,	 (8)

where e is the model residual. E(X) is the expected value of X, t is the lag.

Figure 4.  Criterion evolution according to the different models Mna . nb
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This condition is, of course, ideal and in practice it is sufficient to verify that φ e e (t), 
remains in a confidence band usually fixed at the 95%, which means that φ e e (t) must 
remain inside the range ±​ 1.96

 ___ 
​√ 

__
 N​
 ​, with N the number of testing data on which φ e e (t) is 

calculated.
Billings et al. (1986) proposed also tests for looking into the cross-correlation among 

model residuals and inputs. This cross-correlation is defined by the following equation:

	 φ u e (t) = E(u(t - t)e(t)) = 0    ∀t	 (9)

To implement these tests (8, 9), u and e are normalized to give zero mean sequences of unit 
variance. The sampled cross-validation function between two such data sequences u(t) and 
e(t) is then calculated as:
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If the equations (8, 9) are satisfied then the model residuals are a random sequence and are 
not predictable from inputs and, hence, the model will be considered as adequate. These 
correlations based tests are used here to validate the neural network model. The results are 
presented in fig. 5.

In these plots, the dash dot lines are the 95% confidence bands. Fig. 5 shows that the 
evolution of the cross-correlation of the ARX model is inside the 95% confidence bands. 
The auto-correlation of the ARX model exceeds the threshold (95%) for few points. This 
explains the non-dependence of the residual signal from the input one. Therefore, this model 
is considered a reliable one for describing the dynamic behaviour of the process. Fig. 6 
represents the prediction error between the real output temperature and the estimated one.

Figure 5.  Results of model validation tests
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The main advantage of the proposed approach consists in the natural ability of the 
ARX approach in modelling nonlinear dynamics in a fast and simple way and in the possi-
bility to address the process to be modelled as an input-output black-box, with little or no 
mathematical information on the system.

4. C onclusion
This work aims to identify process dynamics by means of an ARX model in order to provide 
reliable predictions. This study shows that the identification of the reactor-exchanger 
dynamics by means of input-output experimental measurements provides a useful solution 
for the formulation of a reliable model. In this case, the results showed that the model is able 
to give satisfactory descriptions of the experimental data. Finally, the identified model will 
be useful as a reference one for the fault detection and the isolation (FDI) which can occur 
through the process dynamics.
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