SYMPOSIUM SERIES No. 150 © 2004 IChemE

COMPUTER-AIDED HAZOP OF BATCH PROCESSES

Paul W.H. Chung and Steve A. McCoy
Department of Computer Science, Loughborough University, Loughborough, Leicestershire
LE11 3TU; UK; email: p.w.h.chung@lboro.ac.uk

HAZOP is a well-respected technique for identifying potential hazards in process
plants. However, the application of the technique is very repetitive and time consum-
ing. One way to overcome this bottleneck is to develop automated hazard identifi-
cation systems that emulate the HAZOP technique. Much of the research on
automated hazard identification so far has concentrated on continuous plants by con-
sidering the causes and consequences of deviations from steady state. This paper
focuses primarily on batch processes where a batch plant moves through a
number of different stages during operation. It investigates the use of qualitative
simulation and knowledge-based techniques to analyse the effect of following a
sequence of operating instructions on a plant. A prototype system called
CHECKOP is described. The proposed ideas will be illustrated through an
example. Further ideas for extending the computational framework will also be
discussed.

INTRODUCTION

HAZOP studies are widely used for identifying hazard and operability problems during
plant design. The technique is described in a number of books (for example Kletz, 1999).
However, HAZOP studies are time consuming, labour intensive and expensive. There-
fore, major research projects have been carried out to develop tools to automate the
HAZOP technique. Some advances have been made in the area of automated hazard
identification of continuous plants by considering the causes and consequences of devi-
ations from steady state. The computing technique used is generally based on the idea of
fault propagation using signed-directed graph (Chung, 1993; Jefferson et al., 1995;
Vaidhyanathan and Venkatasubramanian, 1995). While a lot of progress has been
made in this area (McCoy et al., 1999a, 1999b and 1999c; 2000a and 2000b), very
little work has been done in automated hazard identification of batch plants. The
signed-directed graph technique is inappropriate for batch processes as a batch plant
moves through a number of different stages during operation (McCoy et al., 2003).
Therefore, a new approach has to be sought.

The rest of this paper describes a research project that considers the use of qualitat-
ive simulation and knowledge-based techniques to analyse the effect following a sequence
of operating instructions has on a plant. The consequences of missing out instructions or
carrying them out too early or too late are also analysed. A research prototype system
called CHECKOP has been designed and implemented to test these ideas. A description
of an earlier version can also be found in Chung et al. (2003).

1

SYMPOSIUM SERIES No. 150 © 2004 IChemE

CHECKOP SYSTEM OVERVIEW
The CHECKOP system consists of three main components, takes a number of files as input
and generates a report file as output as shown in Figure 1.

The three main components of the system are the Parser, the Deviation Generator
and the Simulation Engine. The Parser reads the input files prepared by the user and con-
verts the information into an internal form for processing by the other two components.
The information provided by the user is specific to the plant that is required to be
HAZOPed. One of the files gives details about the items of equipment in the plant,
their connectivities and their current states. The other file contains a set of operating
instructions to be applied to the plant to bring the plant from its current state to its goal
state, while also achieving the production of a batch of product!

The Deviation Generator systematically applies the deviation guidewords — no,
early and late — to the operating procedure so that the Simulation Engine can infer what
will be the consequence if a certain instruction in the procedure is not executed, or the
instruction is carried out too early or too late. Having gone through all the deviations, the
Simulation Engine will produce a report file providing warnings against any undesirable
situations that may result from the deviations. To carry out the simulation the Simulation
Engine requires the Action Model Library which provides information about actions that
can be performed on different pieces of equipment and the effects of those actions.

PLANT DESCRIPTION
An object-oriented approach is used to describe the plant. Consider the batch plant as
shown in Figure 2; each item in the plant is declared in the plant description file. For

Plant specific
Plant Operating
Description || Procedure
File File
N
4 K
Internal Internal
Plant [_" Procedure
Model Model
.:nc;g;r; e Simulation Modified - Deviation
Library Engine Procedure Generator
.
Batch CHECKOP
HAZOP System
Report

Figure 1. The components of CHECKOP

2

SYMPOSIUM SERIES No. 150 © 2004 IChemE

washwater| nlet

tank101
reactantf

valve101

pump101

tank1
reactantB

Holding Tank
for Product Separation

valve 104
reactori 01

valve103

tank103

[productP,
reactantd]

valvelDE

Figure 2. A simple batch plant

each item at least the following basic information is given:

e The type of unit it belongs to;
e Which other plant items it is connected to.

Other appropriate information related to a plant item will also be stored with that plant
item. Table 1 provides some example descriptions of the plant items found in Figure 2.

OPERATING PROCEDURE DESCRIPTION

In order for the CHECKOP system to analyse an operating procedure, the instructions
have to be written following the templates. In general, instructions that are written in
natural language style are difficult for the computer to understand and their meaning
may also be ambiguous. Therefore, to avoid natural language processing, an operating
procedure written as input to CHECKOP strictly follows the templates below:

Template 1: Item Action
Example: valvelOl open

Template 2: Item Action until Condition
Example: mixer on until elapsed-time 20 minutes

Template 3: Iteml Action Item2 Filler-word Fluid until Condition
Example: reactor101 fill-from tank101 with reactantA until volume 30 percent

3

SYMPOSIUM SERIES No. 150

© 2004 IChemE

Table 1. Explanation of Plant Description

Formal plant item declaration

Explanation

instance(tank101 is a tank,
[
content info [reactantA],
outports info [out is [pump101,in]]
D.
instance(pump101 is a pump,
[
status is offline,
outports info [out is [valvel01,in]]
D.
instance(valvelOl is a valve,
[
status is closed,
outports info [out is [reactor101, in2]]
D.
instance(reactor101 is a stirred_tank_reactor,
[
outports info [outl is [valvel03,in],
out2 is [valvel06,in]],

heatSink info [hout is [jacket101,hin]],

reaction info [reaction_ab_p]

D-

Tank101 is a tank

The content of the tank is reactantA

The outlet of the tank is connected
to the inlet of pump101

Pump101 is a pump

The status of the pump is off-line

The outlet of the pump is connected
to the inlet of valvelOl

ValvelOl1 is a valve

The status of the valve is closed

The outlet of the valve is connected
to inlet 2 of reactor101

Reactor101 is a stirred-tank-reactor

The outlet 1 of the reactor is connected
to the inlet of valve 101 and outlet 2 is
connected to valve 106

The heat of the reactor is transferred to
jacket 101

The intended reaction is called
reaction_ab_p

Given the plant shown in Figure 2, the instructions for charging reactor101 with reactantA

can be expressed as:

valvelOl open
pumplO0l start

reactorl0l fill-from tankl01l with reactantA until volume 30

percent
pumplO0l stop
valvelOl close

The file containing the operating instructions for operating the plant is read in by
CHECKOP and translated into its internal form.

4

SYMPOSIUM SERIES No. 150 © 2004 IChemE

THE ACTION MODEL LIBRARY

Associated with each plant item type there is an action model in the Action Model Library.
The model specifies the operations that can be carried out on that type of plant item. For
each action the pre-conditions that must be true before the action and the post-conditions
after the action are stated.

For example the actions for a valve can be open or close. In its general form, there is
no pre-condition for opening or closing a valve. However, the post-condition for opening a
valve is that a flow path exists between the upstream unit and the downstream unit. The
post-condition for closing a valve is that the flow path between the upstream unit and
the downstream unit no longer exists.

The actions for a pump can be start or stop. To start a pump, the pre-conditions are
that there must be a flow path between the source of a fluid and the pump and there must be
a flow path between the pump and the sink. If the pre-conditions are not met then start
operation will generate a warning message. The post-condition of starting a pump is
that there is a flow between the source and the sink. On the other hand, there is no pre-
condition for stopping a pump and the post-condition of stopping a pump is that there
is no flow between the source and the sink.

THE DEVIATION GENERATOR
The Deviation Generator applies the guide words no, early and late systematically to the
operating instructions to generate different versions of the operating procedure. This
allows CHECKOP to explore the consequences of different scenarios that could result
from operator human errors.

By applying the guideword no to the following example procedure:

(1) valvelOl open

(2) pumplOl start

(3) reactorl0l fill-from tankl0l with reactantA until volume
30 percent

(4) pumplOl stop

(5) valvelOl close

the Deviation Generator will remove systematically one instruction at a time from the
procedure, which will result in five different procedures. Each representing an error of
omission, i.e. an operator failed, or forgot, to carry out a specified instruction.

For example, procedure with instruction 1 omitted:

(2) pumplOl start

(3) reactorl0l fill-from tankl0l with reactantA until volume
30 percent

(4) pumplOl stop

(5) valvelOl close

SYMPOSIUM SERIES No. 150 © 2004 IChemE

Procedure with instruction 2 omitted:

(1) valvelOl open

(3) reactorl0l fill-from tankl0l with reactantA until volume
30 percent

(4) pumplOl stop

(5) valvelOl close

When the guide word early is applied to the procedure, instructions are moved earlier in
the procedure. For example, moving the instruction “reactor101 fill-from tank101 with
reactantA until volume 30 percent” two steps forward will result in the procedure:

(3) reactorl0l fill-from tankl0l with reactantA until volume
30 percent

valvelOl open

pumplO0l start

pumplO0l stop

valvel0l close

(1)
(2)
(4)
(5)
All the different procedures generating by the Deviation Generator are passed to the
Simulation Engine for analysis to identify operability problems and potential hazardous
situations.

SIMULATION ENGINE

The heart of the CHECKOP system is the simulation engine. Given an operating pro-
cedure, it applies the instructions one at a time and simulates its effect by changing the
state of the plant. Therefore, the plant moves from one state to another until all the instruc-
tions are completed. However, the execution of a procedure may not always reach its end.
This is because when the simulation engine detects an operability problem or hazardous
situation it will report to the user.

For example, an analysis of the example procedure with instruction one missing will
result in the following warning: There is no flow path between tank101 and reactor101 for
filling.

The simulation engine will work systematically through all the procedures gener-
ated by the deviation generator.

SYSTEM IMPLEMENTATIONS AND SAMPLE RUNS

The system has gone through two iterations of design and implementation. The initial
prototype of CHECKOP was written using the knowledge-based system toolkit CLIPS
(Donnel and Riley, 1994) to prove the concepts. Not all the components described
in the previous sections were implemented. The following example illustrates the capa-
bility of the early prototype. Consider a simple procedure for filling a kettle written in

6

SYMPOSIUM SERIES No. 150 © 2004 IChemE

CLIPS syntax:

1. (op [kettle] move-under [kitchen-tap])

2. (op [kettle] open-1id)

3. (op [kitchen-tap] turn-on)

4. (op [kettle] fill-from [kitchen-tap] with water until

volume 50 percent)
5. (op [kitchen-tap] turn-off)
6. (op [kettle] close-1id)

Different versions of the procedure are created manually by applying the guidewords no
and other. The effects of following the modified procedures are determined by
CHECKOP.

Example 1: with instruction 1 removed, CHECKOP generates the warning:
Cannot fill [kettle] because it is not under the [kitchen-
tap] for filling.

Example 2: with instruction 2 removed, CHECKOP generates the warning:
Cannot fill [kettle] because the 1lid is closed.

Example 3: with instruction 3 removed, CHECKOP generates the warning:
Cannot fill [kettle] because there is no flow from [kitchen-tap].

Example 4: with instruction 1 replaced with

(operation [kettle] move-under [softdrink-tap])

CHECKOP generates the warning:

Cannot fill [kettle] because it is not under the [kitchen-
tap] for filling.

Example 5: with [kitchen-tap] replaced by [softdrink-tap] in all the
instructions, CHECKOP generates the warning:

Cannot fill [kettle] Dbecause the content of [softdrink-tap]
is not water.

CHECKOP is being re-designed and re-implemented in C++ to run under Windows. The
Deviation Generator that was not implemented in the CLIPS prototype is now in the C++
version. However the Action Model Library is still very limited. Furthermore, CHECKOP
also needs to be extended with a new module to handle consequence modelling so that the
result of the analysis is not limited to the immediate effect of the operating problems but
will be able to identify the hazards that follow.

CONCLUSIONS AND FUTURE WORK

Significant progress has been made in developing systems to automate hazard
identification. The technology for continuous operations has reached maturity for
commercialisation. Much work still has to be done for batch operation, but promising
progress has been made.

SYMPOSIUM SERIES No. 150 © 2004 IChemE

The current version of CHECKOP has demonstrated proof of concept for modelling
operating procedures and their effect on a simple batch process. However, the Action
Model Library is still very limited and requires further development work, to cover a
wider range of actions; additionally, some of the existing action models need enhancing,
to ensure that their pre-conditions and post-conditions are as accurate as possible. It may
also be possible to develop the operations used to group actions too, so that standard
operations models can be defined and reused many times, in the same way that individual
actions are defined from a model.

In parallel with the Action Model Library development, a wider range of deviation
guidewords must be considered, as automatically applied to actions in the operating
instructions. So far, “No Action” and “Early/Late Action” have been considered and
modelled. The next step is to fully consider “Shorter/Longer Action”, where the action
is performed for a longer or shorter time than intended. This is particularly applicable
for those actions which have an “until” clause (e.g. what happens if the reactor is only
filled to 10% instead of 30%?). Variants of the “Other Action” guide word should also
be considered. This would include considering what happens if the action is performed
on the wrong piece of equipment (e.g. what if the wrong pump is switched off?). Care
needs to be taken to ensure that the most sensible and likely deviations are created for
a given guide word, as the potential number of variations for even a single action step
is huge.

The earliest version of CHECKOP was developed in CLIPS, and the program is
now being re-designed and re-implemented in C++ to run under Windows. This has the
benefit of faster performance and is also a more commonly known language among soft-
ware developers, so that future development should be facilitated. One other goal is to
integrate the CHECKOP tool with the already written Hazid system (Chung et al.,
2004), for Hazop analysis of continuous plants. The integration of hazard identification
tools for both continuous and batch operations will provide a complete system for
HAZOQP that is able to handle continuous operation and the non-steady state operation
of the same plant, such as start up and shut down. This also means that the batch Hazop
simulator will have access to the full process behaviour models provided by Hazid.
Since Hazid is written in C++-, it is natural to move to the same language for CHECKOP.

Within CHECKOP, further development will also be needed to model phenomena
which are not so far covered very well, such as process fluids and their interactions and
reactions (whether intended or unwanted). This work will feed into more accurate model-
ling of the consequences of mal-operation in the batch plant, in terms of chains of events
and/or hazards — a form of consequence modelling. The objective in doing this type of
modelling is to provide an even richer form of output as a result of the batch Hazop
emulation performed by CHECKOP.

ACKNOWLEDGEMENT
The work described in this paper is supported by a grant from the Engineering and
Physical Sciences Research Council (Grant number: GR/R37531).

8

SYMPOSIUM SERIES No. 150 © 2004 IChemE

REFERENCES

Chung, P.W.H. (1993) Qualitative Analysis of Process Plant Behaviour, Proceedings
of the Sixth International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, Chung, P.W.H., Lovegrove, G. and
Ali, M. (eds), Gordon and Breach Science Publishers, Edinburgh, June 1993, pp. 277-283.

Chung, P.W.H., Wen, Q., Connolly, J.H., Busby, J.S. and McCoy, S.A. (2003)
Knowledge-based Support for the Authoring and Checking of Operating Procedures,
Proceedings of the 16th International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, Chung, P.W.H., Hinde, C. and M. Ali (eds),
Springer, Berlin, Loughborough, June 2003, pp. 264-270.

Chung, P.W.H., Lam, W., Lee, R., Madden, J., McCoy, S. and Wilson, T. (2004) Integration of
Hazard Identification Software with Process Design Systems, Proceedings of APCChE 2004,
Japan. (To appear).

Donnel, D. and Riley, G. (1994), CLIPS Reference Manual Version 6.0, Software Technology
Branch, Lyndon B. Johnson Space Center, Houston, Texas.

Jefferson, M., Chung, P.W.H. and Rushton, A.G. (1995) Automated hazard identification by
emulation of hazard and operability studies. Procedings of 8th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
Melbourne, pp 765-770. Gordon and Breach Publishers.

Kletz, T.A. (1999) Hazop and Hazan: Identifying and Assessing Process Industry Hazards
(4th Edition), IChemE.

McCoy, S.A., Wakeman, S.J., Larkin, F.D., Jefferson, M., Chung, P.W.,
Rushton, A.G., Lees, F.P. and Heino, P.M. (1999a) HAZID, A Computer Aid for Hazard
Identification 1. The STOPHAZ Package and the HAZID Code: An Overview, the Issues
and the Structure, Transactions of the Institution of Chemical Engineers, Part B, 77,
pp- 317-327.

McCoy, S.A., Wakeman, S.J., Larkin, F.D., Chung, P.W., Rushton, A.G. and Lees, F.P. (1999b)
HAZID, A Computer Aid for Hazard Identification 2. Unit Model System, Transactions of
the Institution of Chemical Engineers, Part B, 77, pp. 328-334.

McCoy, S.A., Wakeman, S.J., Larkin, F.D., Chung, P.W., Rushton, A.G., Lees, F.P. and
Heino, P.M. (1999c) HAZID, A Computer Aid for Hazard Identification 3. The Fluid
Model and Consequence Evaluation Systems, Transactions of the Institution of Chemical
Engineers, Part B, 77, pp. 335-353.

McCoy, S.A., Wakeman, S.J., Larkin, F.D., Chung, P.W., Rushton, A.G. and Lees, F.P. (2000a)
HAZID, A Computer Aid for Hazard Identification 4. Learning Set, Main Study System,
Output Quality and Validation Trials, Transactions of the Institution of Chemical Engineers,
Part B, 78, pp. 91-119.

McCoy, S.A., Wakeman, S.J., Larkin, F.D., Chung, P.W., Rushton, A.G. and Lees, F.P. (2000b)
HAZID, A Computer Aid for Hazard Identification 5. Future Development Topics
and Conclusions, Transactions of the Institution of Chemical Engineers, Part B, 78,
pp. 120-142.

McCoy, S.A., Zhou, D. and Chung, P.W.H. (2003), State-Based Modelling in Hazard
Identification, Proceedings of 16th International Conference on Industrial and Engineering

9

SYMPOSIUM SERIES No. 150 © 2004 IChemE

Applications of Artificial Intelligence and Expert Systems, Chung, P.W.H., Hinde, C.J. and
Ali, M. (eds), Springer-Verlag, Loughborough University, Loughborough, UK, June 2003,
pp. 244-253.

Vaidhyanathan, R. and Venkatasubramanian, V. (1995) Digraph-based models for automated
HAZOP analysis, Reliab Eng System Safety, 50:33.

10

	Introduction
	CHECKOP system overview
	Plant description
	Operating procedure description
	The action model library
	The deviation generator
	Simulation engine
	System implementations and sample runs
	Conclusions and future work
	Acknowledgement
	References
	Figure 1
	Figure 2
	Table 1

